

For Businesses

For Homes

Renewable Energy

For Trade Allies

About Energy Trust

Energy Trust of Oregon, Inc. BSUG – April 15, 2009

Sponsors

- The Energy Trust Funding
- NW Natural Space & AV
- ODOE Technical Input
- **BPA Outreach**
- NEEA Outreach
- ASHRAE PDHs for P.E.s & CEMs
- Members Substance

Fourth Year

- 35 sessions one weather cancellation
- April 2006: 38 members
- April 2009: 343 members
- April 2006: 32 Attendees
- April 2009: 114 attendees up as of Monday
- April 2009: 153 organizations

		BSUG MEMBERSHIP				
130	38%	Engineer				
70	20%	Analyst				
37	11%	Conservation Administrator				
32	9%	Architect				
29	8%	Un <mark>kn</mark> own				
6	2%	Contractor				
9	3%	Designer				
6	2%	N/A 🔨 🖊 🖊				
9	3%	Student				
5	1%	Management				
3	1%	Programmer				
3	1%	Recruiter				
2	1%	Facilities Operation				
2	1%	Marketing				
343	100%	Active Only				

of Oregon, Inc.

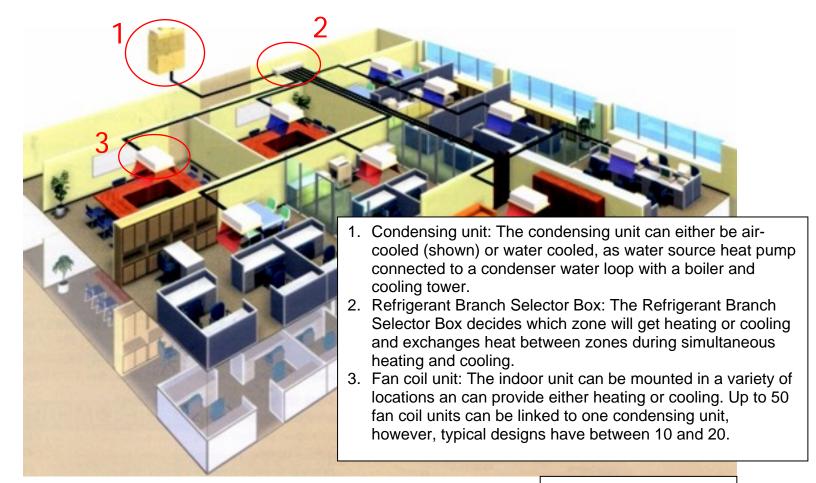
Volunteers

Growth in membership has not been paralleled by number of volunteers

Today's Discussion

Variable-Refrigerant Volume/Flow (VRV/VRF) Systems

Mark Denyer, P.E., LEED[™] AP, Associate, MFIA, Inc. Consulting Engineers Dana Troy, LEED[™] AP, Energy Analyst, Glumac



What is VRF/VRV and how does it work?

- Variable refrigerant flow/volume.
- Works as a split system heat pump with local air movement.
- Multiple indoor units linked to one condenser, either air cooled or water cooled.
- The system controls the amount of refrigerant flowing to each of the indoor units.
- The Refrigerant Branch Selector Box connects all of the indoor units and allows each unit to "exchange" heat with one another. Any heat that needs to be added or rejected is then provided by the condensing unit.

Picture courtesv of Mitsubishi

Effective Building Types for VRV

- 1. Existing Buildings
 - a. Buildings with not enough room for cooling ductwork
 - b. Option for adding cooling to a hydronic heat replacement project
- 2. Core and Shell Projects
 - a. Very easy system to expand or modify
 - b. Cost effective option to water source heat pumps or HW/CW Fan Coils
- 3. Energy Efficiency Projects
 - a. Energy efficient option to standard VAV with reheat type projects
 - No energy penalty for reheat
 - Significant reduction of fan energy
 - Better zoning options than CV systems for buildings under 75,000 sq ft

Effective Building Types for VRV (Cont)

- 3. Energy Efficiency Projects (Cont)
 - b. Energy efficient option to standard DX split systems
 - Significantly higher part load performance than typical split system condensing units and heat pumps
 - Higher SEER/EER ratings due to digital DC compressors and condensing fans
 - Allows for smaller condensing units due to load sharing with multiple indoor units.
- 4. Buildings with a high level of diversity
 - Mixed-use projects where certain zones require cooling year round while other zones require heating.
 - Restaurants -dining areas vs. cooking areas

System capacities and efficiencies

- Each condenser can support up to 50 indoor units; however, in common design there is typically no more than 10 to 20 indoor units connected to one condensing unit.
- Each condensing unit has a maximum capacity of approximately 20 tons.
- ILPV values have been verified as high as 16.

How does ventilation work with VRF systems

- Very similar to two and four pipe fan coils, water source heat pumps, and other zonal systems.
- 100% OA make-up air unit can provide outside air either in series or parallel.
 - Series: The outside air is ducted directly to the fan coil. The fan is always on during scheduled hours in order to keep the ventilation air moving.
 - Parallel: The outside air is ducted directly into the room, apart from the fan coil. The fan coil can then be cycled on and off when the space temperatures can be maintained with the ventilation alone.

Oregon Installations

- Esquire Apartments/Restaurant (7 story historic building) 35,000 sf mixed use (restaurant and apartments) historic building
- NuMiss office Building (3 story C&S office under construction) 18,250 square foot 3 story core and shell office
- Oregon Air Reps Office (Daikin demonstration project) ~5,000 sf general office
- Redmond High School (Under Preliminary Design) 260,000 sq ft of all inclusive high school
- Mercy Corps (Under construction) 80,000 sf office spaces, 4 stories, half existing, half addition
- The Allison Inn (Under construction) 140,000 sf hotel, 4 stories, new construction
- UW Tacoma Joy Building (DD phase)
 50,000 sf college building, 3 stories, 100% remodel
- UW Tacoma Jefferson Avenue Building (DD phase)
 40,000 sf college offices and library stacks, 4 stories, new construction

Oregon VRV System Distributers

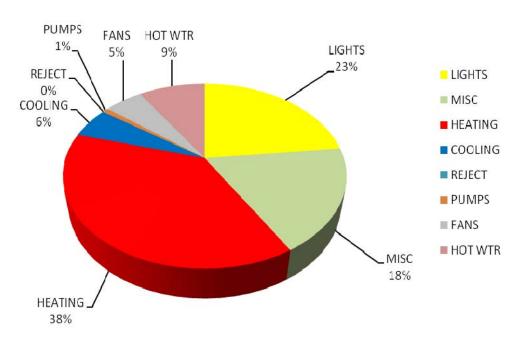
- Daikin Oregon Air Reps 503-620-4300
- LG Johnson Air Products 503-234-5071
- Sanyo Airefco 503-691-4320
- Mitsubishi FE Company Applied Equipment Sales 503-351-1379

Comparative Costs

- VRV = \$17.75/ sq ft
- VAV w/central chiller = \$22.50/ sq ft
- VAV packaged DX units = \$18.70/sq ft
- The above values were a cost estimate for preliminary design options for a New 260,000 square foot High School in Central Oregon.

Energy Savings – Modeled Results (Using Trace 700)

- Modeled results for a well designed building with a heat recovery ventilation unit show about a 33% savings when compared to a ASHRAE baseline building (CV DX systems) These results were based on the final LEED EA-1 model for the NuMiss Office building – a 18,250 square foot 3 story core and shell office.
- Modeled results show about a 12.5% savings when comparing a VRV to Packaged DX CV systems. These results were simulated by taking the above office energy model of the proposed building and running the simulation with packaged DX in place of the VRV system that was designed.
- Modeled results have shown up to 40% to 45% savings when using a VRV with ventilation heat recovery for a remodeled mixed-use type building. These results were based on the final LEED EA-1 model for the Esquire Apartments - - a 35,000 square foot mixed use (restaurant and apartments) historic building.



Energy Savings – Modeled Results (Using eQUEST)

Modeled results for a well designed building with a heat recovery ventilation unit show about a 10-20% total building energy savings when compared to a ASHRAE baseline HVAC system.

The total HVAC energy costs are about 50% of the total building energy use (fans, pumps, cooling, and heating). Therefore, if the *HVAC* savings is 100%, the total building energy savings is only 50%.

A 10-20% total building energy savings is actually a 20-40% savings in HVAC energy use.

Modeling VRV with TRACE

- Baseline Algorithms
 - TRACE can explicitly model VRV, both heat recovery and non-heat recovery options.
 - Algorithms based on Daikin empirical model
 - Baseline equipment based on first generation Daikin VRV
 - Equipment easily modified to match current generation equipment or any other manufacturer.
 - The following slide provides a description of the program's and modeler's approach to the system (from TRACE programmers).
- Modeling Inputs
 - Enter Heating and Cooling compressor COP or KW/ton
 - Enter Condensing Fan power consumption KW/ton
 - Select unloading curve, compressor power consumption curve, condensing fan curve and cycling point as appropriate.

TRACE programming information

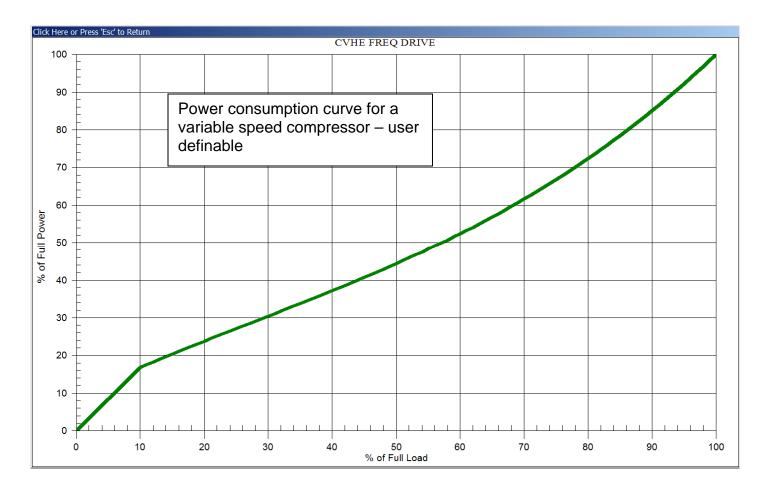
Basis of the TRACE model: Daikin empirical model

Airside simulation:

Similar to a water source heat pump, when the room drift temperature rises above the cooling thermostat, the cooling coil is engaged at a constant cooling supply air temperature for the a percentage of the hour that it takes to bring the room temperature down to the cooling thermostat temperature. This heat is rejected to the refrigerant condenser loop. For the portion of the hour that the cooling coil is de-energized, the supply air will remain at the return/outside air dry bulb temperature (plus fan heat).

When the room drift temperature drops below the heating thermostat, the heating coil is engaged at a constant heating supply air temperature for the a percentage of the hour that it takes to bring the room temperature up to the heating thermostat temperature. The indoor unit will remove heat from the refrigerant condenser loop. For the portion of the hour that the cooling coil is de-energized, the supply air will remain at the return/outside air dry bulb temperature (plus fan heat).

Although the system default reheat minimum will be set to 10%, the user can change it on a room by room basis if they want. This minimum airflow is only used during the part of the hour in which neither heating nor cooling coils are active.


🚰 Library / Template Editors -		
File View Options Window Help		
🖋 🕀 🍸 🏛 🚓 豢 🛣 🔓 📚 🖡 🍸 🔳 🔳	\$ \$ \$ \$ M ¥ \$ 8 8 8 8 8	TRANE°
Cooling Equipment Main		
Cooling category Air-cooled unitary	Comments Based on 20 ton Daikin-MFIA - 10% cycling	<u>Save</u> Close
Operating Mode Capacity Cooling tons	Energy Rate 4.396 COP	
Heat Recovery 13.5 Mbh/ton	4.946 COP	Trace Equipment Library definitions
Tank Charging		Note: the defined COPs, Heating
Tank Charging & heat recovery		Capacities and associated equipment
Pumps	Туре	power curves.
Primary chilled water None	1900	power curves.
Condenser water None		
Heat recovery or aux condenser None		
Unloading Curves Primary	Secondary	Curves
Curve type Power consumed CVHE FREQ	DRIVE CVHE FREQ DRIVE	• ·
Standard Ambient modification VRV Cooling	Amb Relief 🔍 VRV Heating Amb Relief 🔹	-
C DOE Capacity		
Main	<u>O</u> ptions	<u>G</u> raph
	~~~~~	
For Help, press F1		





Library / Template B File View Options	Editors - Window Help				
🔊 🕀 Y 🗎 📾 🕈 🕷	🚖 중 🛱 🖡 ĭ   🛢 📕 🍫	(†) ● M (†) ∮ ∰	⊜ ⊯   ?	TR	ANE°
Cooling Equipment	Options				
Max chilled water reset Load shedding economizer Fuel source	D F No Vility	Chilled water temp. Condenser temp.	Design leaving Difference Design entering	44 °F 10 °F 95 °F	Heat pump operating temperatures
Fuel type Evaporative precooling Evap precool effectiveness	Electric No	Reject condenser heat	Minimum operating	0 *F	
	None	Free Cooling Type Fluid cooler type	None	, , , ,	Trace definition of a heat pump
Miscellaneous a 1 Cntl panel & interloo		Free cooling pump Pump head	None 0 kW	•	
3     A       4     Power consuming       5     Accessories					
Main Options Graph					
For Help, press F1					



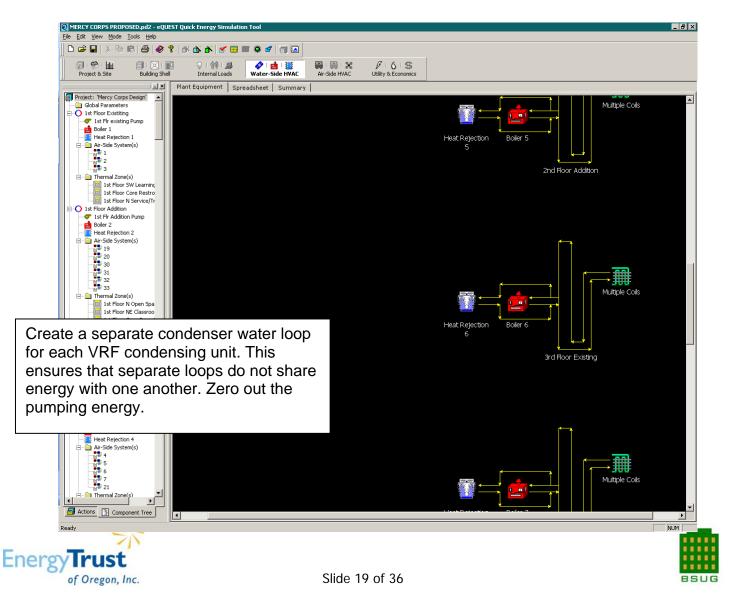


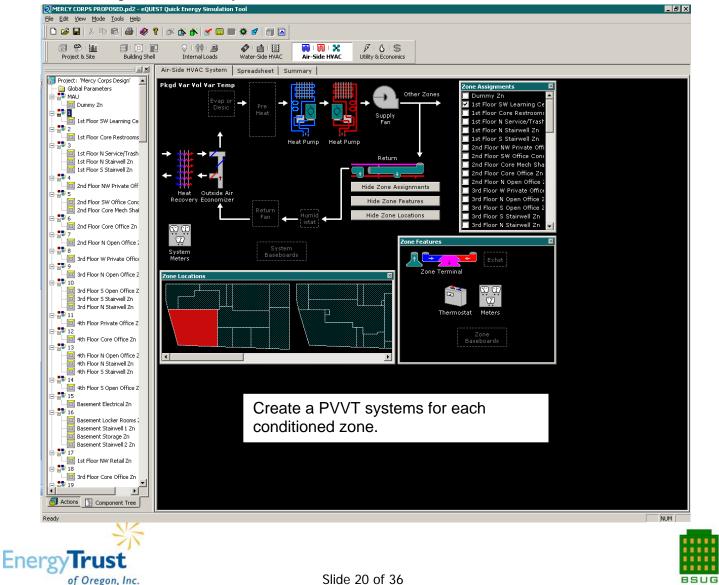




🔀 Library / Template Editors -	Power consumption rate and curve for a variable speed condensing fan – user definable	<u> </u>
File View Options Window Help		
🖋 🕀 🏋 🏛 📾 💲 💥 🙆 🚖 👢 💈	?│▋▋%;۞♥凶∀ፇ▦ ⊜⋈ ? <b>7</b>	RANE [®]
Heat Rejection Library		
Equipment type VRV III 20 ton Condensing fan	Unloading curve Cooling Tower with VFD	<u>S</u> ave
Comments	Cooling Tower with VFD	<u>C</u> lose
Capacity 100 Percent Energy consumption 0.075 kW/ton Fluid type Refrigerant (Air-cooled) Heat rejection type Air-cooled condenser Number of cells 1 Optional Two-Speed Tower Fans Percent airflow at 0 % Low speed energy 0 kW/ton Design Characteristics Temperatures Approach 10 *F Range 10 *F Dry bulb 78 *F Flow rates Design water 0 gpm/ton v Makeup water 0 gal/ton-hr v Hourly ambient WB offset *F		<u>N</u> ew C <u>o</u> py <u>D</u> elete C <u>u</u> rves
J For Help, press F1		NUM







#### Modeling the VRF in eQUEST: PVVT Water Source Heat Pumps

- Zone the building in the same manner as the design. This is very important for the energy sharing capabilities of the VRF system.
- We do not use this method for our energy models, but it is one way of approaching the system.
- eQUEST system: PVVT, with the condenser set to water cooled to activate a condenser water loop. Create one system per zone.
- Create separate condenser water loops for each VRF condenser and zero out the pump energy.
- Manipulate the fan efficiency ratio and the electric boiler EIR to reflect the efficiencies of the VRF units.









Slide 20 of 36

Air-Side HVAC System Paramet	ers				? ×	
Currently Active Sys	tem: 1		Sy:	stem Type: Pkgd	Var Vol Var Temp	
Basics Fans Outdoo	r Air Cooling	Heating	Preconditioner Meter	s Refrigeration		
Coil Cap / Control Unit	Coil Cap / Control Unitary Power   Preht / Basebrd   Supp Heat/Defrost   Cap Curves/Waste Ht   Stages					
Heating Capacity ———			Heating Control and	Reset		
Heat Source:	Heat Pump	Ch	ange the heat sour	ce to heat pu	imp, and	
Zone Heat Source:	Not Installed	•	Hot Deck Max Lea	iving Temp:	°F	
Heating Capacity:		Btu/h	Reheat Delta T:	ĺ	n/a ⁰F	
Heat Sizing Ratio:	1.00	ratio	RPM Limits:	Maximum:	n/a rpm	
Min Cycling Part Load	Ratio: 0.80	ratio		Minimum:	n/a rpm	
Hot Water Coil Head:	n/a	ft	Hot Deck Sched:	n/a	<b>-</b>	
Hot Water Coil Delta	T: n/a	°F	Availability Sch:	- undefined -	<b>•</b>	
HW Valve Type:	n/a	•	Heat Control:	n/a	<b>-</b>	
HW Loop:	n/a	•	Heat Reset Sch:	n/a	<b>-</b>	
DHW Loop:	n/a	•	Minimum Heating	Reset Temp:	n/a °F	
Zone HW Loop:	n/a	•	Heating Coil Wipe f(cooling flo	lo/s	·	
					Done	

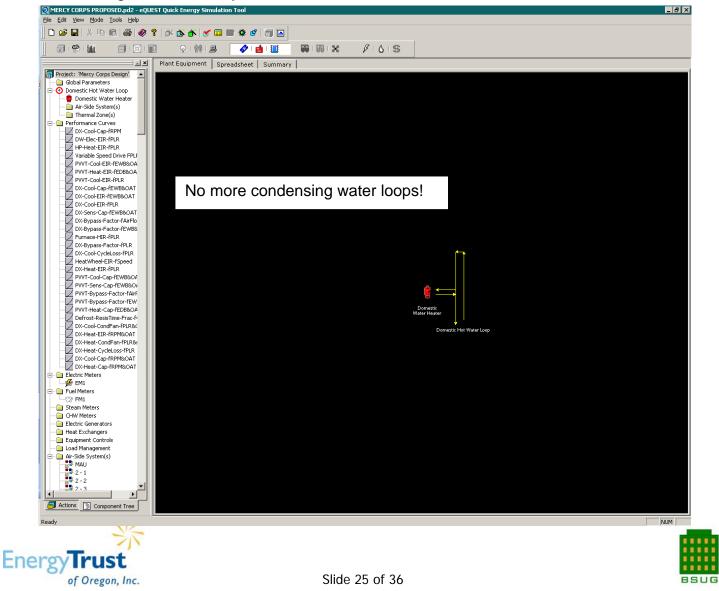




Air-Side H¥AC System Parameters	? ×
Currently Active System: 1	System Type: Pkgd Var Vol Var Temp
Basics Fans Outdoor Air Cooling Heating	Preconditioner Meters Refrigeration
Coil Cap / Control Unitary Power Condenser (	Cap Curves   Evap Cooling   Economizer   Stages
Air-Cooled Condenser & Outdoor Fan Condenser Type: Water Cooled Outside Fan Mode: Intermittent Outside Fan Temperature: 45.0 °F	Evaporative Precooler Evap Condenser Effectiveness: n/a Btu/Btu Evap Cond Sched: n/a Evap Condenser Electric: n/a W/Btu
change the condenser type to Water Cooled and ass the CW loop the zones corresponding condenser loop. This will turn the PVVT system into a WSHP system. B sure to label your zones in a way that identifies them w their condenser or Refrigerant Branch Selector Box. For example, on the drawings, the equipment will have nar such as BC-1, BC-2, or CU-1, CU-2, etc. Give you systems a prefix that matches the CU. For example, if have north office zone served by CU-1, call it 1 North Office, and give all other zones under that CU the sam "1-" prefix. This will save you a lot of time later on for th hourly calculations.	Water-Cooled Condenser Water-Cooled Condenser Condenser Water Coil Head: 20.0 ft Condenser Water Coil Delta T: 10.0 °F Tes Isolation Valve? No CW Loop: 1st Floor Existiting You e
-	Done






ide HVAC System Parameters	
Currently Active System: 1 Basics Fans Outdoor Air Cooling Heati	System Type: Pkgd Var Vol Var
Cooling Power Cooling Power Cooling Electric Input Ratio: 0.2000 Btu/Btu Cooling Compressor Compressor Type: Single Speed Minimum Unload Ratio: 0.10 ratio Min Hot Gas Bypass Ratio: 0.10 ratio	Cooling Electric Input Ratio Curves
Crankcase Power Crankcase Heat: n/a kW Crankcase Max Temperature: n/a °F	Gas Heat Pump Auxiliary Electric — Gas HP Pump kW: n/a W/Btu Gas HP Aux kW: n/a kW
sy <b>Trust</b>	 

#### Modeling the VRF in eQUEST: PVVT air cooled heat pumps

- eQUEST system: PVVT, modeled as air cooled heat pumps. Create one system per zone.
- Change the compressor speed to variable.
- Be sure to label each system and zone so you can identify which condenser each zone is connected to.
- Create hourly reports for the total energy uses for heating and cooling for each system. Use the spreadsheet to find the simultaneous heating and cooling performed for each system and sum the savings.







Air-Side H¥AC System Parameters	? 🗙
Currently Active System: 2 - 1	System Type: Pkgd Var Vol Var Temp
Basics Fans Outdoor Air Cooling Heating	Preconditioner Meters Refrigeration
System Name: 2 - 1 System Type: Pkgd Var Vol Var Temp General Parameters Return Air Path: Direct Control Zone: 1st Floor SW Learning C System Reports: Yes Dual Duct Type: n/a WL/GS Ht Pump: No	Duct Losses         Duct Air Loss:         Duct Air Loss OA:         n/a         ratio         Duct Zone:         n/a         Again, use the PVVT system and create one system per conditioned zone.         Hot Duct UA:         n/a         Btu/h-°F         Hot Duct DT:
	Humidity Control
System Sizing Sizing Ratio: 1.00 ratio Sizing Option: Non Coincident	Maximum Humidity: 100.0 % Minimum Humidity: 0.0 % Humidifier Type: n/a Humidifier Location: n/a
	Done



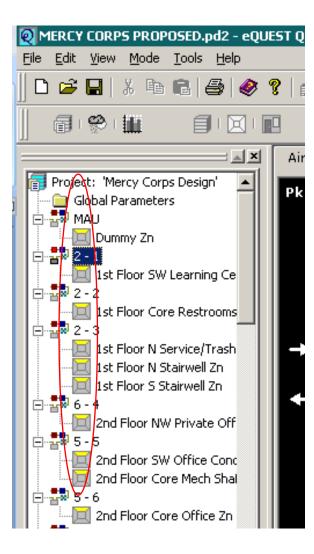


Air-Side HVAC System Parameters			? ×	1
Currently Active System: 2	1	System Typ	e: Pkgd Var Vol Var Temp	
Basics Fans Outdoor Air	Cooling Heating Pre	econditioner Meters Ref	frigeration	
Coil Cap / Control Unitary Powe	r Condenser Cap Cu	irves   Evap Cooling   Econo	omizer   Stages	
Cooling Power	C 0.3150 Btu/Btu	Variable Speed sind	ge the compressor typ ce it is an air cooled c modeling each zone a	ondenser.
Cooling Compressor Compressor Type: Variab	le Speed 💌	its own split system	air cooled heat pump the VRF is that 10 to	b. The main
Minimum Unload Ratio:	0.15 ratio	are served one con	denser instead of just	one.
Min Hot Gas Bypass Ratio:	0.15 ratio	f(t entering wetbulb, t outdoor drybulb):	-Cool-EIR-fEWB&	
Crankcase Power	G	as Heat Pump Auxiliary Electri	ic	
Crankcase Heat:	0.050 kW	Gas HP Pump kW:	n/a W/Btu	
Crankcase Max Temperature:	50.0 °F	Gas HP Aux kW:	n/a kW	
			Done	
米				1
ergyTrust				
of Oregon, Inc.	Slide 27 of 36		BSUG	2

Coil Cap / Control   Unitary Power	r Condenser Cap Curves Evap Cooling Economizer Stages
Air-Cooled Condenser & Outdoor F Condenser Type: Air Coole	E The condenser type is set at Air C
Outside Fan Mode: Intermitte Outside Fan Temperature:	tent  Evap Cond Sched: n/a  45.0  F Evap Condenser Electric: n/a W/Btu
Outside Fan Electric:	wybtu
	Water-Cooled Condenser
Outdoor Fan Pwr = f(cool PLR, osa db):	-CondFan-fPl Condenser Water Coil Head: n/a ft
Outdoor Fan Pwr =	-CondFan-fPl Condenser Water Coil Delta T: n/a 여
f(heat PLR, osa db): 10X-Heat	Isolation Valve? Yes
	CW Loop: n/a 💌



Air-Side HVAC System Parameters Currently Active System: 2 -	System Type: Pkgd Var Vol Var Temp
Basics Fans Outdoor Air C	Cooling Heating Preconditioner Meters Refrigeration
Minimum OA Control Metho Fi Minimum OA Sizing Method S Minimum Air Schedule: Outside Air from System:	undefined -
Air-Side Economizer Cycle Outside Air Control: OA Ter Drybulb High Limit: 65.0 Enthalpy High Limit:	mperature Lockout Compressor:   oF Economizer Low Limit:   Btu Maximum OA Fraction:   1.00
ergyTrust of Oregon, Inc.	Slide 29 of 36


Schedule Properties	? X
Annual Schedules Week Schedules Day Schedules	
Currently Active Day Schedule: Office Fan Day	Type: On/Off Flag
Day Schedule Name: Office Fan Day Type: On/Off Flag	
Hourly Values	
Mdnt - 1: 0 8-9 am: 0	4-5     Air-Side HVAC System Parameters
1-2/am: 0 9-10 am: 0	5-6 Currently Active System: 2 - 1 System Type: Pkgd Var Vol Var Temp
2-8 am: 0 10-11 am: 0	
3/4 am: 0 11-noon: 0 4-5 am: 0 noon-1: 0	<ul> <li>7-8 Basics Fans Outdoor Air Cooling Heating Preconditioner Meters Refrigeration</li> <li>8-9</li> </ul>
	9-10 Fan Power and Control Flow Parameters Night Cycle Control
	10-11
7-8 am: 0 3-4 pm: 0	11-M
	Night Venting Night Cycle Fan Control
	Night Vent Control: Not Available 🔽 Night Cycle Control: Cycle On Any 💌 💧
This model has OA running in Parallel, so we	Night Vent Schedule: n/a 💌 Night Cycle Fans: n/a 💌
set the fan control to be "off" for all hours of	Vent Temperature Sch: In/a
the day, but changed the Night Cycle Control	Night Vent Delta T: n/a °F
to "Cycle On Any", which turns the fans on	Night Vent Ratios
	Supply CFM: n/a Return CFM: n/a
and off to meet set points. The design must	Supply kW: n/a Return kW: n/a
include these controls to incorporate these	Supply dT: n/a Return dT: n/a
changes in the model.	
	Done





Here is a closer look at the naming of the systems. We named each system 1, 2, 3, etc and put the CU prefix before it. Most of these systems are linked to one another, so we created each system in the INP file, saving a couple of hours.

Note that the MAU has to be before any of the systems that reference it. DOE-2 is a top-down type code.







Hourly Results Selection	×
Select Report or Block to View/Edit:         Image: HR1         Image: Brite and the each hourly report. Note that each hourly report can only hold a finite amount of hourly outputs. We had to create two hourly reports to get all of the data we needed.         Create a separate block for each of the VRF (PVVT) systems you have defined in eQUEST and give them the same name, but slightly difference in case eQUEST gets confused with the naming.	Report Block Name:       2-1         Variable Type:       HVAC System         Building Component:       2 - 1         Selected Hourly Results Series:         Image: Selected Hourly Results Series:
naming. Each block should have two series, Elec input to heat (kW and Elec input to cool (kW). Each data output cell will be in kWh. HR2 P-28 New Report New Block Del Block	<ul> <li>☐ Total zone cool coil output (Btu/hr)</li> <li>☐ Total baseboard heat coil output (Btu/hr)</li> <li>☐ Total preheat coil output (Btu/hr)</li> <li>☐ Humidification heat output (Btu/hr)</li> <li>☐ Dehumidification reheat heat output (Btu/hr)</li> <li>☐ Dehumidification reheat heat output (Btu/hr)</li> <li>☐ Maimum temp air handler could supply (deg F)</li> <li>☐ Maximum temp air heat load from LOADS (Btu/hr)</li> <li>☐ Total SPACE light heat to return (Btu/hr)</li> </ul>







															X					
	I     I     Image: State																			
	Home	Insert	Page Lay	out For	mulas D	A Revi	ew View	1											<b>0</b> - D	~
	on cut		Calibri	* 11	* A A	= = =	- 18 m	Wrap T	ext	General						× 💼	Σ AutoSu	um * 🧛	A	
Pa	ste Cop		B I U - H - O - A -			■ 書 課 課 課 Merge & Center *			\$ - 0/0		Conditional Format Cell			Insert Delete Format		Fill *	Find &			
		mat Painter							Formatting * as Table * Styles *					· ·		Clear * Filter * Select *				
	Clipboar		G	Font 🗟 Alignment 🗟 Number									Styles	, ji	Ce	lls	Editing			
1	N32 • A PIERCY CORPS PROPOSED - Baseline'IBV33															*				
	A	В	С	L	M	N	0	Р	Q	R	S	T	U	V	W	X	Y	Z	AA	- 6
1 2				1	1	1	1	0.15	0.15	0.15		2	2	2	2	2	2	0.075	0.075	
2	1		1	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
5	1		2	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
5	1		4	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
6	1		5	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
7	1		6	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
8	1	1	7	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
9	1	1	8	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
10	1	1	9	1.497	0	1.054	0	8.241	0	0		2.437	0	0.889	0	0.854	0	4.18	0	
11	1		10	0.831	0	0.656	0	6.145	0	0		2.353	0	0.025	0.025	0.597	0	2.975	0.025	
12	1		11	0.655	0	0.525	0	4.842	0	0		1.912	0	0.025	0.025	0.462	0	2.399	0.025	
13	1		12	0.586	0	0.464	0	4.341	0	0		1.734	0	0.025	0.025	0.408	0	2.167	0.025	
14	1		13	0.536	0	0.415	0	3.967	0	0		1.578	0	0.025	0.025	0.374	0	1.977	0.025	
15	1		14	0.499	0	0.396	0	3.806	0	0		1.51	0	0.025	0.025	0.358	0	1.893	0.025	
16	1		15 16	0.463	0.025	0.374	0	3.615 3.15	0.025	0.025		1.429	0	0.025	0.025	0.337	0	1.791	0.025	
17	1		10	0.025	0.025	0.025	0.025	0.15	0.025	0.025		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.025	
19	1		18	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
20	1		19	0.025	0.025	0.025	0.025	0.15	0.15	0.15		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
												0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
Group the datase	ts hv	/ cor	nden	ser r	numł	her (	Crea	te a	form	ามไล		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
•										iuiu		0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
that takes the diffe	eren	ce b	etwe	en t	he a	mou	nt of	ene	rav			0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
									37			0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
used for heating a	used for heating and cooling for each hour for each											0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	
											0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075		
condenser. When there is both heating and cooling for a										0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075			
portioular hour, the amellar value of the two is the energy											0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075		
particular hour, the smaller value of the two is the energy											0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075		
recovered by the Refrigerant Branch Selector Box.										3.675	0.025	1.315	0.025	1.148	0.025	6.138	0.075			
									3.269	0	0.025	0.025	0.862	0	4.156	0.025				
												2.474	0	0.025	0.025	0.742	0	3.241	0.025	
											1.963	0	0.025	0.025	0.629	0	2.617	0.025		
The amount of energy saved will be implemented as an											1.579	0	0.025	0.025	0.581	0	2.185	0.025		
									1.091	0	0.025	0.025	0.531	0	1.647	0.025				
Exceptional Calcu	llatic	on to	rьA	.C1.								0.025	0.025	0.025	0.025	0.496	0	0.546	0.05	
•												0.025	0.025	0.025	0.025	0.487	0	0.537	0.05	
40	1	2	15	0.025	0.025	0.025	0.025	0.717	0.125	0.125	_	0.025	0.025	0.025	0.025	0.482	0	0.532	0.05	-
Rea		RCY CORPS	-KOPUSED - E	baseline 1	heet3 / Sh	ieet4 / 🖓	60- 					14				m	100	%		) (+)





#### **DOE-2 Accuracy**

- The eQUEST methodology is not perfect, but it is felt to be a conservative approach to modeling the system.
- The methodology has been accepted by the USGBC (to date).
- DOE-2 VRF system curves: any volunteers to create these?





#### Questions



